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Abstract. The self-energy of an interface elecmn interacting with bulk longitudinal-optical 
phonons as well as interface optical (lo) phonons in a magnetic field of arbitrary strength is 
studied using the Green function method. Our results show that the absolute value IE:!pbI 
of the ground-state self-energy of the electron is a rapidly increasing function of the magnehc 
field in the weak-magnetic-field region, bur IE&hl is a slowly decreasing function of the 
magnetic field beyond a critical magnedc field Bc. Par the excited states, IEZphl(n 2~1) is an 
increasing function of the magnetic field in the pre-resonant region, while E&h is a positive 
and decreasing function of the magnetic field beyond the resonant region. Numerical results 
show that the electron-lo phonon interaction contributes only when the mean distance of the 
polaron from the interface is small and in the exlremely-weabmagnetic-field region. 

1. Introduction 

An electron in a magnetic field possesses Landau levels. When the electron moves slowly 
in the conduction band of a polar crystal, it interacts with the polarization field of the crystal 
lattice to form a quasi-particle which is called a ‘polaron’. The electron-phonon interaction 
produces a correction to the electron Landau levels and hence renormalizes the electron 
effective mass from its band value to a slightly larger polaron value. Recently, much 
attention has been centred around the polaron aspect in the quasi-two-dimensional (QZD) 
electron systems (such as surface, interface, superlattice and quantum well structures). In 
the past, much work on Q2D magnetopolarons has been devoted to the calculation of the 
ground-state energy and the effective mass of polarons using the perturbation variational 
method or path integral approach [1-13]. Few investigations have studied the interface 
magnetopolaron by using the more powerful Green function method. To mention a 
few, using a Green function method, Das Sarma and co-workers [14,15] made a formal 
calculation of the Landau-level correction and optical anomalies in the resonant region for 
pure two-dimensional (zD) systems. The issue of ‘interface polarons’ was discussed in [16]. 

It is generally accepted that in bulk semiconductors or polar crystals the effective mass 
of the electron is enhanced by the virtual coupling of a quasi-free electron with bulk 
longitudinal-optical (BO) phonons. However, for ZD or QZD systems, one of the present 
authors and his collaborators [&7] found that the interaction of electron with interface 
longitudinal-optical (IO) phonons must be considered as well as the interaction of electrons 
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with BO phonons, especially when the distance between the electron and the interface is 
comparable with the radius of the polaron, aresult which has been confirmed by experiments. 

In this paper we study the self-energy of an interface polaron using the standard Green 
function method. We present a calculation of the self-energies of interface polarons for all 
the Landau levels for arbitrary magnetic field strengths. In our studies, both the Bo phonon 
and the IO phonon are included in the interaction; the numerical results of the self-energies 
as well as the total energies of the interface magnetopolaron for the first three Landau levels 
will be given. The remainder of the paper is organized as follows: in section 2 we present 
the Hamiltonian of the system and outline the calculation of the Green function and the self- 
energies of the interface polaron. Section 3 contains our numerical results and discussion. 
A brief summary is presented in section 4. 

B-H Wei and K W Yu 

2. Theory 

Now we consider an interface polaron in polar-polar crystals. Suppose that there are polar 
crystals 1 and 2 in the z > 0 and z < 0 semispaces, respectively; the x-y plane is their 
interface. An electron moves in crystal 1, i.e. the z > 0 side: so there is a barrier from crystal 
2 to it. Without loss of generality, we suppose that the barrier is infinitely high; therefore, 
the electron i s  restricted within crystal 1. The static uniform magnetic field B = (0, 0,  B )  
is applied along the z direction and described by a vector potential in the Landau gauge 
A = B(0,  x ,  0). In this paper we  simultaneously take the interactions of an electron with 
both BO and Io phonons into account. With the isotropic effective-mass approximation the 
Hamiltonian of the electron-phonon system can be written as follows [7]: 

H = HQ+ Hi) + HL 

HI = K-EO + &-io 

(1) 

(2) 

The meaning of the terms in the above equations can &,found in [7]; for conciseness, we 
do not rewrite them here. 

In the weak-electron-phonon-coupling limit, HI could be treated as a small perturbation. 
The unperturbed energy corresponding to HQ i s  given by 

where E,, 
and (np) are the mean numbers of BO and IO phonons, respectively. 

(n + f ) h w ,  is the electron Landau level with Landau quantum number n. ( n k )  
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By using the standard Green function method [17], the electron proper self-energy parts 
corresponding to &-BO and H,-ro are obtained as 

In the above equations, fT,.r.(z, IC) and f5,,.+(z, q) are defined in [7], @(s, iw,) is the 
Matsubara Green function of a free electron, (n,) is the mean number of electrons, and (nk) 
and (np) are the mean numbers of the BO phonons and IO phonons, respectively. 

The total proper self-energy part of the electron is given by 

E*($, z ,  io,) = El;o(s, z ,  iw,) + ZTo(s, z,~io,). (9) 

We continue iw, analytically to the upper half of the complex w plane and take the form 
o = (E;  - &)pi. In the zero-temperature case the mean numbers of electron and phonons 
vanish, i.e. ( n k )  = (nq)  = (n,) = 0: then equation (9) becomes 

From Dyson's equation, the retarded Green function is obtained as 

1 
E,' - E, - E*@. Z, E,") 

R B (s, z .  E:) = 

As a result, theelectron self-energy shift related to HI, is given approximately by 

SE,(z) = E*(s, z, E;) = Ve'l)Bo(r) + V:!io(z) . (12) 

where VJ:ko(z) and V,(llo(z) are the potentials of electrons induced from the electron-BO 
phonon interaction and electron-io phonon interaction, respectively. 

Then we have the effective Hamiltonian 

where the effective potential is 
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Km(z) is the image-potential energy of the electron, which is given in the second term of 

For simplicity, we take into account only the lowest subband of HL: so the relevant 
H i .  

variational wavefunction with the variational parameter f n  can be written as [4] 

@"(z) = %2_3/2z exp(-tnz) 

and the polaron energy is given by 

(16) 

where ECBo and EClo are the self-energies induced by the ekCtrOn-BO phonon 
interaction and electron-10 phonon interaction, respectively. The self-energy of the polaron 
corresponding to the Landau quantum number n is given by 

(17) (=) E & ~  = + E,-,, 

and the variational parameter t,, can be decided by the equation E r )  = min[Ef)(&)], i.e. 

Using equation (15), we can find the mean distance of the polaron from the interface: 

3 
2" = lmdz#: (z)zh(e)  = -. 2 t n  (19) 

Thus {,, is inversely proportional to the mean distance of the polaron from the interface. 
Now we calculate the self-energies of the interface polaron; first we use [IS] 

I , 2 - m. (m'-m) l(nlexp(ikii - p ) b  ) I  - ~ 5 1 1  

I(nIexp(iq.p)In ) I  - m , ! ~  ~XP(-C)[L;-"(OI~ 

I l l  b 

~ ~ P ( - ~ I I ) [ L = - " ( ~ I , ) I ~  
I (20) 

I 2 - 2 ("-m) 

where Tli = hk2 2m U, and = f iq2/2mboc.  Then we change the sums over k and q 
in equation (12) into integrals. After a tedious but direct calculation, we can obtain the 
self-energies of the interface magnetopolaron with the Landau quantum number n as 

where 
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L:(x) is the associated Laguerre polynomial and 

is the magnetic length characterizing the spread of the electron of the electron wavefunction 
in the x direction. The two upper integral limits in equations (19a) and (19b) can be written 
as 

hck i  hcqi XmB = - XmI= - 
2eB 2eB ' 

The maximum length of two kinds of optical phonon wavevector k, and qm are chosen on 
the boundaries of the first Brillouin zones. 

3. Numerical results and discussion 

A GaAs (crystal I)/GaSb (crystal 2)  structure is used for a model system of an interface 
magnetopolaron to make the numerical computation. The parameters concerned are [4] 
EOI = 12.83, = 10.9, Rwp,ol = 36.7 meV, mbl = 0.0657m0, &a = 14.44 and 
E,,,* = 15.69. The maxima of the two kinds of optical phonon wavevector are given 
by 

where a = 5.654 A is the lattice constant of GaAs. 
Figures 1 and 2 show the self-energy of the interface magnetopolaron as a function of 

the magnetic field B for the first three Landau levels (n  = 0,1,2).  From figure 1 ,  we can 
see that in weak magnetic fields the absolute value of the ground-state self-energy IEL$,,l 
is a rapidly increasing function of B while, beyond a critical field B,, [Ezp,,l becomes a 
slowly decreasing function of B.  From figure 1,  we obtain B, E 2.7 T. The existence of a 
critical magnetic field can be understood as follows. It is well known that the self-energy 
of a polaron increases with increasing magnetic field for small fields [1,2,4-6,14, 151. As 
a result, the number of polar phonons (either BO phonons or Io phonons) increases. As the 
number of polar phonons in a crystal is not unlimited, when the magnetic field i s  increased 
beyond a critical field Bc, the number of polar phonons will reach a maximum. Beyond 
B,, i.e. at relatively strong magnetic fields, a further increase in the magnetic field will 
convert some of the polar phonons into non-polar phonons, thus reducing the self-energy 
of the polaron. For the excited states, IEFpha,l(n > 1 )  is an increasing function of B in 
the pre-resonant region, but EZPb becomes a positive and decreasing function of B beyond 
the resonant region. In that case, the excited polaron state becomes unbounded when the 
magnetic field is larger than the resonant magnetic field. From figure 2, one finds that the 
resonant magnetic field is roughly 21 T. 

In the limit of a large distance (i.e. 4 + 0), which means that the electron is confined 
to the whole bulk of crystal 1, Ee-l0 -+ 0 and E e - ~ 0  + three-dimensional self-energy 

~ 

~ E3D, and in the opposite limit, i.e. c,, + 00, which means that the electron is confined on 
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Figure 1. Self-energy of an interface polaron as a function of magnetic field 6 for the Landau 
ground state n = 0. 
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Figure 2. Same as figure I for different Landau levels n = 0, 1,2. 

the surface of crystal 1, E c - ~ 0  + 0 and E,-Io + pure two-dimensional self-energy EZD. 
For the value of Z between the two limits our numerical results show that 

That is to say, the self-energy of the Q2D system is l age r  than that of 3D system but smaller 
than that of pure 2D system, which has been confirmed by many other studies. 
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To investigate the effects of the electron-BO phonon interaction and electron-Io phonon 
interaction, the self-energy is plotted in figure 3 and figure 4 as a function of magnetic field 
for different mean polaron distances 2 from the interface (defined by equation (19)). From 
these figures we can see that the electron-io phonon interaction should be considered only 
when the polaron is near the interface and in the weak-magnetic-field region. The critical 
magnetic field for the electron-Io phonon interaction is very small and, with the increase 
in the polaron mean distance Z from the interface, the critical magnetic field will disappear. 
For the GaAs-GaSb interface structure, the mean distance of the polaron from the interface 
is very large; so the electron-Bo phonon interaction plays a main role. 
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Owing to the effect of the electron-optical phonon interaction, the electron Landau 
levels will be shifted. Figure 5 shows the total energy of the interface magnetopolaron as 
a function of the magnetic field, from which we can see that, before the resonant region, 
the Landau level will shift to a lower energy level and after the resonant region the Landau 
level will shift to a higher energy level, which is consistent with many previous studies 
[18,19]. In the resonant magnetic field region the Landau-levels will be split and this will 
be studied in our future papers. 

4. Summary 

In this paper, we have studied the self-energies of an electron at the interface of polar 
crystals interacting with both BO phonons and IO phonons in a magnetic field of arbitrary 
strength by using !he Green function method. The self-energies as well as the total energies 
of the interface magnetopolaron for all the Landau levels have been studied. Our numerical 
results show that in the weak-magnetic-field region the Landau ground-state self-energy 
lE&hl is a rapidly increasing function of the magnetic field but, beyond a critical magnetic 
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Figure 5. Energies of the interface pclmn as a function of the magnetic field B for different 
Landau levels n = 0.1.2. 

field B,, IEi$hl is a slowly decreasing function of the magnetic field. For the excited states, 
lEPphl(n 1) is an increasing function of the magnetic field in the pre-resonant magnetic 
field region but, beyond the resonant magnetic field region, EEph become positive and a 
decreasing function of the magnetic field: thus the excited polaron state become unbounded. 
Our numerical results also show that, only in rather weak magnetic fields and for small mean 
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departures of the polaron from the interface, could the electron-10 phonon interaction make 
a contribution. 

The method suggested in this paper could be applied to the weak electron-phonon- 
coupling limit and for arbitrary magnetic fields except in the resonant region; the cyclotron 
resonance of interface magnetopolarons in the resonant region will be studied in our future 
papers. 
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